Hard Rock Camaro, Part 1


Hard Rock Camaro, Part 1


By Dave Emanuel





Since the very first Z/28 Camaro set tire to pavement, it has been imbued with a performance image. That’s as it should be. RPO Z/28 was developed specifically to provide Chevrolet with an entree into the Trans/Am road racing series. But in the 1970s, fabricated oil shortages and newly instituted exhaust emissions mandates, combined with corporate apathy, cut the heart and soul out of the Z/28. What had been a pulse-quickening performance icon, became nothing more than a package of striping tape. Then it disappeared.


RPO Z/28 returned for the 1977 model year, wounded, but still breathing. It wasn’t until the introduction of the Third Generation Camaro, for the 1982 model year, that a true revitalization began. Although it was a far cry from the original version, the Third Generation brought with it a positive move towards performance
credibility. In 1986, a 350 engine became available and Z/28 horsepower took a significant step upward.


Yet even with Tuned Port Injection, stock Z/28 Camaros with 350 cubic inch engines residing beneath their hoods are hard pressed to click off mid-14-second quarter mile times. By comparison, Fourth Generation Z/28s have no trouble rumbling through the quarter in 14-seconds flat. This was the car about which Chevrolet asked, “What would you expect from the country that invented rock and roll?”


Considering the ingredients that comprise a 1986-1992 350 Tuned Port engine, a Third Generation Z/28 should be able to run rock and roll right along side its more youthful replacement; it should produce the type of performance that brings some white to your knuckles and a smile to your face. And it should be able to fulfill the need for speed without running afoul of emissions laws. It can– it’s just a little harder to squeeze horsepower out of an L98 Tuned Port engine than it is an LT1, hence the name, the “Hard Rock Camaro”. This project originally
appeared in Popular Hot Rodding magazine and serves as a blueprint for building exceptional performance.


For people raised on carburetors and mechanical distributors, late model vehicles can be a bit intimidating. But in spite of computerized engine management systems, electronic fuel injection and emissions control equipment, an internal combustion engine is still an internal combustion engine. It requires air and fuel, administered in the proper amounts to produce horsepower. Consequently, for maximum performance, the formula for short block preparation is the same as with any other
type of high output engine; precise machining and assembly practices are required. However, emissions requirements and a limited rpm range (with the manifolding that’s part of Tuned Port Injection assembly, maximum horsepower is typically achieved at 4750-5000 rpm) dictate judicious piston, piston ring and camshaft selection.


According to Garry Grimes of Grimes Automotive Machine, building a high performance engine for a late model emissions-controlled vehicle requires the same type of preparation as a race engine. He states, “When you build a high performance street engine, durability has to be a major consideration, but you also can’t afford to give away any horsepower, because you’re limited in terms of modifications. If you want the engine to pass an emissions test, cam timing has to be conservative and compression ratio must be set to match.”


Grimes’s formula for a streetable small block that can click off impressive numbers at the drag strip begins with careful preparation of a four-bolt main block. He states, “When you get up into serious horsepower levels (above 500) I like to start with a Bow Tie block. But with a street/strip car, where horsepower is realistically going to be in the 350 to 450 range, a solid production block that has been sonic checked is suitable.”


Once block preparation was complete, Grimes assembled the engine using Keith Black hypereutectic pistons which he fit with a Speed-Pro moly piston ring set. Hypereutectic piston alloys contain a high concentration of silicone which improves strength and also offers excellent insulating properties. In fact, heat transfer through hypereutectic pistons is reduced enough that wider piston ring end gaps are required than with conventional cast or forged pistons. This reduction in heat transfer translates to potential power increases because combustion pressures above the piston don’t bleed off as quickly.


Obviously, pressure must be contained above the piston, so ring seal is
of paramount importance. Use of top quality rings is therefore vital to maintaining maximum performance and minimum exhaust emissions.


The remainder of the reciprocating assembly consists of reconditioned production connecting rods and a production cast crankshaft. Although a forged crank is standard fare in most high performance engines, the anticipated power level of this engine, and its relatively low rpm range, (below 6000 rpm) will not place extreme stresses on the crankshaft. A cast crank should survive with no problems, but just to add some insurance, Grimes installed a Fluidampr 6-1/4″ vibration damper.


Considering the projected power level, this may seem like a bit of overkill, but according to Grimes, “One point that’s often overlooked when an engine is built using stock type components is that stock harmonic balancers are tuned to control the torsional vibrations of a stock rotating assembly. When you install aftermarket pistons, recondition the rods and lighten them, When that’s done, rotating weight is altered enough that the stock balancer is no longer correctly tuned. That may or may not be a problem, but it doesn’t pay to gamble. We know the Fluidampr does the job.”


Another component known to get the job done is the ZZ9 hydraulic roller camshaft from TPI Specialties. Developed specifically to optimize the performance of late model fuel injected engines, while keeping exhaust emissions at acceptable levels, the ZZ9 provides 212 degrees of intake and 226 degrees of exhaust duration (at .050″ lift) combined with .483″ of intake and .520″ of exhaust lift. (The lift numbers jump to .515″ and .555″ with 1.6:1 rocker arms.) A Competition Cams roller timing chain and gear set drives the cam which is mated to stock Chevrolet hydraulic roller lifters.


Although a solid short block is a requisite for durability, the true arbiters of horsepower are the cylinder heads, intake and exhaust systems and camshaft. Several viable cylinder head options exist, but since the ultimate goal was to make the engine suitable for competition in the National Muscle Car Association’s EFI class, use of stock castings was advantageous since they didn’t incur any “power adder” penalties.


Discussion of the situation with Pete Incaudo and Bob Hudgins of CNC Cylinder Heads Inc. led to the selection of a set of 1988-1991 Corvette aluminum L98 castings. Incaudo has developed highly efficient ports and combustion chambers for these heads and their resulting air flow capacity is sufficient to meet the demands of engines producing 350 to 450 horsepower. Hudgins has translated Incaudo’s designs into digitized data that allows them to be precisely reproduced on the company’s 5-axis simultaneous CNC machining center.


Incaudo designed the L98 port contours to function with stock valve diameters (1.94″ intake, 1.50″ exhaust). But in this case, a little bigger is a little better. He states, “We’ve had amazing results with stock valves and with just a slight increase in diameter, air flow is even better, and so is horsepower. That’s a point a lot of people miss. It is possible to increase air flow and decrease horsepower because the quantity of air flow isn’t as important as the quality. In these heads, we took REV stainless 2.02″ intake and 1.60″ exhaust valves and cut them down to 2.00″ and 1.56″. With these diameters, all you have to do is machine the stock valve seats– if you go any larger, the seats have to be replaced. I like the REV valves because they’re manufactured of exceptionally strong severe duty stainless steel material and the quality of machining is always excellent. They consistently hit their mark on the flow bench too, and they’re reasonably priced so they’re affordable for street applications.”


After the CNC porting was completed, the heads were assembled using Competition Cams dual valve springs, steel retainers and 10-degree locks. Comp Cams guideplates and 7/16″ rocker arm studs were also installed along with 1.6:1 ratio Pro Magnum roller rocker arms. Sealing the heads to the block are a pair of Fel-Pro part number 1010 head gaskets. These gaskets are designed for aluminum heads and incorporate a copper wire beneath the stainless steel armor around the bore openings.


The ideal mate to the CNC-ported Corvette aluminum heads is a TPI Specialties “Big Mouth” intake manifold, large tube runners and ported plenum and 52mm Throttle body. Although other intake systems are available, this configuration offers a combination of torque, horsepower and drivability that’s hard to beat. According to Myron Cottrell of TPI Specialties, “The Big Mouth base, large tube runners and ported plenum is probably the best combination for a car that is street driven. It fits better with a mild engine combination, stock gearing and street
type torque converter. We also offer the Mini Ram intake manifold, but it’s designed more for top end horsepower than mid-range torque. It requires a significantly different engine/driveline combination for maximum performance.”


On the exhaust side of the heads, a set of ceramic coated Hedman emissions-legal headers, with 1-5/8″ diameter primary tubes, were connected to a pair of Random Technology Super High Flow catalytic converters. A Random Technology cat-back exhaust system with dual 3″ tail pipes is attached to the converter outlets.


After the engine was installed in the Camaro’s vacant engine bay, a TCI “Street Fighter 700-R4 transmission and Super Street Fighter 12” torque converter were bolted to it. This transmission was modified to use TCI’s Universal Lock-up Kit, which takes torque converter lock-up control out of the hands of the vehicle’s ECM and puts it into the driver’s. Under normal driving conditions, the converter clutch locks when the transmission shifts into overdrive and steady throttle pressure is applied. However, a switch mounted in the passenger compartment, allows
normal control to be over-ridden. When the switch is flipped, the converter clutch applies as soon as the transmission shifts into second gear. Experience has shown that locking the converter through second and third gears is worth a tenth of a second and one mile per hour in quarter-mile clockings.


The final link in the Hard Rock Camaro’s driveline is a stock 7-5/8″ 10-bolt housing that was fitted with a USGear 3.42:1 ring and pinion set and Auburn High Bias limited slip differential. Previous experience with 3rd and 4th Generation Camaros has demonstrated that these components offer surprising strength and durability. With a ring gear diameter of only 7-5/8″, there isn’t a lot of material to absorb the stresses of aggressive drag strip launches. But in previous projects, USGear ring and pinion sets have held up to continued abuse and survived admirably. Auburn’s limited slip differentials have also survived very well. One of
the common denominators in our previous experiences has been Red Line Synthetic’s Shockproof gear lubricant. The Shockproof formulation seems to offer an extra margin of protection that’s vital for prolonging the life of rear end components.


Of course, having completely gone through the engine and driveline, it just wouldn’t do to go off to the drag strip with stock paint. One ofthe premier custom painters in the Southeast is Ernie Ritchie of Omni Automotive Graphics in Conyers, GA. Ernie agreed to not only apply the paint, but to develop a distinctive, conservative paint scheme. If beauty is in the eye of the beholder, so is “conservatism”. The paint scheme doesn’t exactly exemplify the dictionary meaning of “conservative”, but it is certainly attractive, and never fails to illicit favorable comments from anyone who sees the car. In addition to preparing and painting the body, Ritchie also did the finishing work and installation of a Harwood fiberglass hood.


Following installation of the engine and driveline, the requisite number of proper break-in miles were accumulated before the Camaro was loaded up for a test session at Silver Dollar Raceway in Reynolds, GA. Check out the next feature to see the results.


Dyno Test Results



Hard Rock Camaro 350 Tuned Port Engine



RPMTorqueHP
2000333127
2100340136
2200343144
2300347152
2400349159
2500356170
2600364180
2700374192
2800376201
2900378209
3000386220
3100394232
3200399243
3300400252
3400401260
3500402268
3600406278
3700404285
3800412*298
3900412306
4000405309
4100399312
4200395316
4300394323
4400391328
4500386331
4600381334
4700373334
4800369337*
4900354330
5000344327
5100331322
5200317314
* Maximum readings
All results corrected to 29.92 in/Hg, 60°F., dry air

Sources

Auburn Gear
Auburn Drive
Auburn, IN 46706

219/925-3200

Competition Cams
3406 Democrat Road
Memphis, TN 38118

901/366-1807

CNC Cylinder Heads, Inc.
6400 53rd Street North

Pinellas Park, FL 34665
813/527-8866

Federal-Mogul Performance Parts

P.O. Box 1966
Detroit, MI 48235
248/354-8949

Fel-Pro Incorporated
7450 North McCormick Blvd.
Skokie, IL 60076
708/674-7700

Fluidampr
11980 Walden Ave.
Alden, NY 14004
716/937-3603

Grimes Automotive Machine

215 Tidwell Drive
Alpharetta, GA 30201
770/475-5272

Harwood Industries

17824 State Highway 31 East
Tyler, TX 75705
903/556-6001

Hedman Hedders

730 Branch Drive
Alpharetta, GA 30201
770/664-8880

Keith Black Pistons

4909 Goni Road
Carson City, NV 89706
702/882-7790

Random Technology

1313 Temple Johnson Road
Loganville, GA 30052
770/978-0364

Red Line Synthetic Oil
3450 Pacheco Blvd.
Martinez, CA 94553
510/228-7576

REV Inc.
4704 NE 11th Ave.
Fort Lauderdale, FL 33334
305/772-6060

TCI Automotive
One TCI Drive
Ashland, MS 38603
601/224-8972

TPI Specialties
4255 County Road 10 East
Chaska, MN 55318
612/448-6021

US Gear/Strange Engineering
9420 South Stony Island Ave.
Chicago, IL 60617
312/375-4900


Magazine Images


Hard Rock Camaro, Part 1 The Hard Rock Camaro leaves on a check-out pass. Teething problems
prevented a full pass from being made prior to deadline, but the car
feels strong and should run in the 12s, in emisisons-legal trim.
Hard Rock Camaro, Part 1 With all the hoses and lines running on top of the engine, it’s true credential are difficult to find. The only tip-offs that something unusual is going on in the engine compartment are the Hedman headers, and TPIS 52mm throttle body. If you’re familiar with Tuned Port engines, you’ll also notice the large-tube runners.
Hard Rock Camaro, Part 1 To assure optimum ring seal, Grimes specified a file-fit ring set and individually fit the top compression rings to each cylinder.
Hard Rock Camaro, Part 1 The desired amount of end gap was achieved by filing each ring end gap as required. Hypereutectic pistons require larger end gaps than standard cast or forged pistons.
Hard Rock Camaro, Part 1 To prolong crankshaft life, Grimes installed a 6-1/4″ Fluidampr. That may seem like overkill, but with a cast crank, discretion is the better part of valor.
Hard Rock Camaro, Part 1 It takes air flow to makes horsepower, so a set of CNC-ported Corvette aluminum heads were used in place of the stock cast iron heads found on 350 engines origianlly installed in Camaros.
Hard Rock Camaro, Part 1 A TPIS “Big Mouth” manifold is used in conjunction with large tube runners and ported plenum for optimum intake system air flow capacity.
Hard Rock Camaro, Part 1 TCI reworked the stock 700-R4 transmisison to provide quicker, firmer shifts and improved durability. TCI also supplied a Super Street Fighter torque converter for more aggressive launches.
Hard Rock Camaro, Part 1 At the rear, an Auburn High Bias limited-slip differential directs power to both rear wheels. The High Bias models offer more aggressive locking action, which is just what’s needed for drag strip excursions and other high performance driving adventures.
Hard Rock Camaro, Part 1 US Gear/Strange Engineering offers a variety of gearsets for 7-1/2″ and 7-5/8″ 10-bolt rear ends. A 3.42:1 ratio was selected for the Hard Rock Camaro. In spite of their dimunitive size, the gears are surprisingly strong.
Hard Rock Camaro, Part 1 A Random Technology cat-back exhaust system was installed along a pair of Random catalytic converters. The system has a pleasing deep tone and allows the engine to breathe freely enough to produce excellent


Click on the images above for a larger version of the image, and the image caption.


All times are GMT -5. The time now is 08:56 PM.